当前位置: 网站首页 >> 新闻中心 >> 学术动态 >> 正文

“融合•创新”国际学术交流沙龙第十六场活动预告:Manipulating tandem gene repeats via genome evolution mechanisms in yeast metabolic engineering optimization

生物工程学院 国际教育学院 2024-11-25 16:08 浏览:

告题目:Manipulating tandem gene repeats via genome evolution mechanisms in yeast metabolic engineering optimization

报告人姓名: Dr. Bingyin Peng

报告时间:2024年11月28日,周四15:00-16:00

报告地点34号楼生物工程学院1313会议室

报告人及内容简介:

Bingyin Peng’s research focuses on in east engineering & industrial genetics. He obtained his Masters’ degree at Shandong University and PhD degree at the University of Queensland. He was awarded with a CSIRO synthetic biology future fellowship and worked at the ARC Centre of Excellence in Synthetic Biology (Queensland University of Technology Node). His career has been focusing on yeast engineering to develop the superior strains for utilisation of C5 sugars and production of value-added chemicals from cane sugars -- the tasks in biomass refinery theme. His current scientific interest areas include fundamental microbial genetics, metabolic engineering, molecular genetic evolution, and rational genetic design. He is interested in applying his scientific findings to create industrial biotechnology applications for sustainable biomanufacturing and economic growth in remote regions.

Tandemly repeated genes, in the form of an array of two or more copies of a gene, commonly exist in cell genomes. They can be manipulated as a synthetic biology mechanism to increase gene dosage, which may deliver a phenotypic advantage for production of targeted products in microbial cell factories. We develop synthetic genome evolution mechanisms to engineer tandem gene repeats on yeast chromosome, and we also characterize the natural occurrence of such repeats during yeast engineering. (1) We have deployed a haploinsufficiency-driven gene amplification (HapAmp) tool in Saccharomyces cerevisiae. This tool applies an evolutionary molecular principle to lock transgene with a haploinsufficient gene, a gene tightly controlling cell growth. Through tuning the haploinsufficient gene dosage per copy, this tool enables stable integration of 4-50 copies of transgenes. Increased gene copies improved production of protein and small molecules in yeast. Second, we characterized the chromosome integration of the classical 2-micron episomal yeast plasmid, which generated the pools of yeast clones with diversified genotypes and phenotypes. From the pools, yeast clones with optimized production of terpene products were isolated. (3) we developed a bacterial toxin-antitoxin-driven gene amplification (ToxAmp) tool and visualized the evolutionary trajectory of tandem gene repeats at the single-colony levels to understand their stabilities. Applying these tools, we achieved grams-per-liter production of monoterpenes and sesquiterpenes in flask cultivation. Synthetic genome evolutionary mechanisms can be a new focus in metabolic engineering for pathway optimization and creating perturbation pools for understanding metabolic control mechanisms.


生物工程学院 国际教育学院
2024年11月25日

(责任编辑:李翰



上一条:工大讲坛第294期:推荐系统、奇异值分解、机器学习
下一条:外语学院学术讲座预告:从“国别与区域研究”到“区域国别研究”

关闭

文章标签:
读取内容中,请等待...

版权所有©河南工业大学  |  地址:郑州市高新区莲花街100号 邮编:450001 电子邮箱:xb@haut.edu.cn  电话:0371-67756888  |  豫ICP备05002475号 郑公信备4101000000080号  |  

手机版